# 50 ЛЕТ – ГОЛОВНЫЕ ВОЛНЫ В УЛЬТРАЗВУКОВОЙ ДЕФЕКТОСКОПИИ МЕТАЛЛОВ (часть 3)<sup>\*</sup>



**РАЗЫГРАЕВ Николай Павлович** Канд. техн. наук АО «НПО «ЦНИИТМАШ», Москва

## 7. Технологии ультразвуковой дефектоскопии головными волнами

7.1. При- и подповерхностные дефекты и УЗК головными волнами в неразрушающем контроле металлов

При рассмотрении эпюры (рис. 24) напряженного состояния стенки сосуда, трубопровода или других металлоконструкций становится понятно, почему наиболее опасными дефектами являются поверхностные и приповерхностные дефекты, в особенности трещины. Максимальные напряжения растяжения (сжатия) приходятся на приповерхностную часть нагруженного элемента, что может привести к развитию дефектов и разрушению элементов. Этому также способствуют условия эксплуатации трубопроводов, сосудов и металлоконструкций, поверхности которых подвергаются тепловым, радиационным, физическим (механическим) и/или химическим (коррозионным) воздействиям. С другой стороны, анализ действующих технологий и методик НК, в том числе методик УЗК,



Рис. 24. Эпюра распределения нормальных напряжений по толщине стенки сосуда: δ — значения максимальных нормальных напряжений

показывает, что в ряде случаев контроль приповерхностного слоя недостаточно эффективен. Способ УЗК эхо-методом сварных соединений с использованием ГВ показан на рис. 2 (см. часть 1 статьи).

УЗК ГВ обладает следующими важными достоинствами:

• ГВ распространяются почти по нормали к возможной поверхностной трещине. Как известно, при таком взаимодействии волны и трещины



Рис. 25. Примеры элементов металлоконструкций, трубопроводов и сосудов и приповерхностных дефектов в них: а — в сварных соединениях, в аустенитных наплавках и под ними; б — в основном металле валков и роторов; в — в шпильках, которые могут быть выявлены при УЗК ГВ

\* Часть 1 см. «Территория NDT». 2023. № 1. С. 54. Часть 2 см. «Территория NDT». 2023. № 2. С. 46.



Рис. 26. Огибающие последовательности (полученные при контроле искателем ИЦ-61) амплитуд эхо-сигналов ГВ от отражателей, расположенных на различной глубине (цифры у кривых — глубина расположения плоскодонного отражателя):

диаметр отражателя: а — 5 мм; б — 4 мм; в — 3 мм; г — 2 мм; l — расстояние от искателя ИЦ-91 до эпицентра отражателя

обеспечиваются наилучшие условия для ее выявления;

 ГВ имеют максимальную скорость распространения по сравнению с другими волнами.
Это в ряде случаев дает наилучшую интерпретацию сигнала и идентификацию отражателя.

Важным свойством способа контроля ГВ является возможность обнаружения дефектов под грубо обработанной или необработанной поверхностью. В ЦНИИТМАШ на основе первичного физического представления об УЗК ГВ и апробации способа контроля в 1974 г. была разработана первая в мире «Методика дефектоскопии подповерхностной части сварных соединений головными волнами». Она была включена в «Основные положения по ультразвуковой дефектоскопии сварных соединений котлоагрегатов и трубопроводов тепловых электростанций» ОП № 501ЦД-75 [23] и в 1976 г. на выставке Министерства энергетического машиностроения СССР награждена бронзовой медалью ВДНХ СССР.

В дальнейшем эта методика была включена в НТД по УЗК оборудования и трубопроводов АЭС ОСТ 108.004.108-80 [24] и ее последующие редакции. В 1986 г. была разработана «Технология контроля изделий головными ультразвуковыми волнами», включающая в себя методику контроля ИЦУ-3-84 и физическое представление об УЗК металлов ГВ. Она действует и сейчас.

На рис. 25 представлены некоторые примеры приповерхностных дефектов в элементах металлических конструкций, трубопроводах и сосудах, которые могут быть выявлены при использовании УЗК ГВ.

Накоплен большой опыт применения УЗК ГВ различных объектов, разработаны специальные методики контроля различных изделий, сварных соединений, металлоконструкций. Ниже представлены исследования при разработке и внедрении методик УЗК ГВ.

### 7.2. Выявление подповерхностных дефектов искателями головных волн

В ЦНИИТМАШ для обнаружения подповерхностных дефектов, в первую очередь трещиноподобных, которые ориентированы нормально к внешней поверхности проведены исследования выявляемости таких дефектов с помощью УЗК ГВ. Для этой цели разработаны и изготовлены образцы с подповерхностными трещиноподобными дефектами, которые моделируются дном плоскодонного отверстия, ориентированным нормально к контактной поверхности. В исследованиях использовали искатели ГВ ИЦ-61(-91) и ИЦ-70 [25, 26].

На рис. 26 и 27 приведены графики, характеризующие огибающие последовательности амплитуды эхо-сигналов ГВ для различных размеров дефектов. Параметром каждой кривой является глубина расположения дефекта. Зависимости, полученные при контроле искателем ИЦ-61 (рис. 26), свидетельствуют о следующем:

 для каждой глубины залегания дефекта имеется расстояние, при котором он выявляется с максимальной амплитудой эхосигнала;

- максимум чувствительности достигается вдоль луча с максимальной амплитудой поля излучателя 2;
- дефекты, расположенные ближе к поверхности, в том числе поверхностные, выявляются с меньшей амплитудой по срав-



Рис. 27. Огибающие последовательности (полученные при контроле искателем ИЦ-70) амплитуды эхо-сигнала ГВ от отражателя, расположенного на различной глубине (цифры у кривых — глубина расположения плоскодонного отражателя): диаметр отражателя: а — 5 мм; б — 4 мм; в — 3 мм; г — 2 мм; l — расстояние от искателя до эпицентра отражателя



Рис. 28. Изменение амплитуды эхо-сигнала ГВ от поверхностного дефекта в функции от расстояния между искателем и отражателем: а — для ИЦ-61; б — для ИЦ-70; цифры у кривых соответствуют диаметру дефекта

нению с дефектами, находящимися на луче с максимальной амплитудой поля излучателя.

Для ИЦ-70 (рис. 27) максимальная чувствительность лостигается на глубине, соответствующей пересечению лучей с максимальной амплитудой поля излучателя и приемника. Здесь же дефекты, расположенные ближе к поверхности, выявляются с меньшей амплитудой эхо-сигнала. Полученные зависимости аналогичны тем же для отражателей, дно которых перпенликулярно лучу с максимальным значением поля излучателя. Ввиду того что отражатели, имитирующие вертикальные трещины, ориентированы неблагоприятно по отношению к полю излучения-приема искателя (повернуты на угол 12° к лучу с максимальным значением поля излучателя), они выявляются при более высокой чувствительности дефектоскопа. Этим же объясняется уменьшение дальности обнаружения таких дефектов с помощью ИЦ-70. Кроме кривых, характеризующих изменение амплитуды сигнала от дефекта, на каждом графике изображена кривая донного сигнала и уровень шумов при контроле. Кривая донного сигнала соответствует изменению амплитуды эхо-сигнала от грани образца, перпендикулярной контактной поверхности и оси искателя.

### 7.3. Выявление поверхностных дефектов и дефектов под грубой поверхностью с помощью головных волн

Исследована выявляемость поверхностных дефектов при УЗК ГВ сталей перлитного класса [27]. Поверхностные дефекты имитировали с помощью отверстий с плоским дном, образующие которых касались контактной поверхности, и сегментных отражателей (в виде полукруга), выходящих на поверхность. Использовали два вида сегментных отражателей: 1) дно отражателей



Рис. 29. Зависимости амплитуды эхо-сигнала ГВ от размера поверхностного дефекта:

а – ИЦ-70; б – ИЦ-61; 1 – плоскодонные отверстия; 2 – сегментные отражатели, нормальные к поверхности; 3 – сегментные отражатели, образующие с поверхностью угол 78°; А<sub>дно</sub> – амплитуда донного сигнала



ориентировано перпендикулярно контактной поверхности; 2) дно отражателей образует с контактной поверхностью угол 78°, т.е. расположено нормально лучу с максимальным значением амплитуды поля ГВ.

Исследования проводили при показателях шероховатости поверхности Rz = 40 мкм ( $\nabla 4$ ) и

 $R_{\rm Z} = 100$  мкм ( $\nabla 2$ ) с помощью искателей ИЦ-61 и ИЦ-70 с частотой ультразвука 1,8 МГц. Экспериментальные данные показали, что лля обоих значений шероховатости поверхности нормированная относительно опорного сигнала амплитуда эхо-сигнала от дефекта остается постоянной величиной со среднеарифметической погрешностью не более 0,5 дБ. Нормированные зависимости амплитуды донного сигнала эхо-сигнала от дефектов различных размеров и уровень шумов от расстояния между искателем и плоскостью отражателя (АРДдиаграммы) показаны на рис. 28. Видно, что можно обнаруживать поверхностные дефекты не только при  $R_{\rm Z} = 40$  мкм, но и при Rz = 100 мкм, а по амплитуде эхосигнала ГВ можно определять эквивалентные и условные размеры поверхностных дефектов.

Дополнительным источником информации о размере дефекта может служить максимальное расстояние, на котором обнаруживается поверхностный дефект. На рис. 28, *а* четко прослеживается зависимость между размером (глубиной проникновения) поверхностного дефекта и максимальным расстоянием, на котором дефект обнаруживается: большему размеру дефекта соответствует большее расстояние.

На рис. 29 показаны зависимости амплитуды эхо-сигнала ГВ от размера поверхностного дефекта (плоскодонных отверстий и сегментов) при нулевом расстоянии между искателем и дефектом, т.е. когда дефект находится под передней гранью искателя.

Такое расстояние выбрано для упрощения методики определения местоположения (под передней гранью искателя) и размера дефекта, а также в связи с тем, что при нулевом расстоянии наиболее просто распознается ГВ по ее отражению от грани изделия или тест-образца. Экспериментальные данные показы-



Рис. 31. Способ УЗК шпилек головными волнами:

1 — призма излучателя; 2 — падающая продольная волна; 3 — подповерхностная волна; 4 — трещина в металле; 5 — отраженная от трещины подповерхностная волна; 6 — боковая продольная волна в призме приемника; 7 — призма приемника искателя ГВ

вают, что с помощью ИЦ-70 и ИЦ-61 можно обнаруживать достаточно мелкие поверхностные дефекты, при этом искателем ИЦ-70 выявляют поверхностные дефекты при большем соотношении полезный сигнал/шум, чем искателем ИЦ-61.

Другой случай использования ГВ — это обнаружение дефектов под необработанной поверхностью или под резьбой, т.е. под поверхностью, по которой невозможно осуществлять сканирование искателем, но вблизи которой имеется поверхность, шероховатость и конфигурация которой допускают проведение контроля.

В стальном образце под поверхностью с регулярной насечкой изготавливали плоскодонное отверстие, имитировавшее дефект. Исследовали два случая: *а* – вершины насечки расположены заподлицо с контактной поверхностью;  $\delta$  – ее основание располагалось на одном уровне с контактной поверхностью (рис. 30). В каждом случае изучали четыре варианта глубины (высоты) насечки: 0,5; 1,0; 2,0; 3,0 мм. С помощью ИЦ-61, установленного вплотную с краем насечки (как показано на рис. 30), измеряли амплитуду эхо-сигналов ГВ от края насечки и от плоскодонного отверстия, которые наблюдаются (каждый в соответствующем месте развертки дефектоскопа) од-

новременно. После этого амплитуду эхо-сигнала от насечки сравнивали с амплитудой донного сигнала от торца образца, а амплитуду сигнала от отверстия сравнивали с сигналом от такого же отверстия под гладкой поверхностью. Соответствующие расстояния от искателя до отражателя были равны. Обнаружено, что в обоих случаях имеется эхо-сигнал от края насечки, амплитуда которого на 13-18 дБ меньше амплитуды соответствующего донного сигнала в случае а и на 17-22 дБ – в случае б. Эхо-сигнал от насечки в случае б образуется в результате дифракции ультразвука на краю насечки. При этом часть энергии входит в зуб, отражается от его грани и фиксируется искателем. Заметим, что эхосигнал от ступеньки, выступающей над контактной поверхностью (т.е. случай б до изготовления зуба), не наблюдается. Эхо-сигнал от дефекта во всех случаях уверенно фиксировался.

В случае *а* его амплитуда не изменялась по сравнению с сигналом от дефекта под гладкой поверхностью при глубине зуба 0,5 и 1,0 мм, уменьшалась на 5 дБ при глубине насечки 2 мм и на 8 дБ – при глубине 3 мм. Это уменьшение амплитуды связано с отражением части энергии ГВ от края насечки. В случае *б* амплитуда эхо-сигнала от отверстий под насечкой и под гладкой поверхностью в пределах точности измерений ±1 дБ оставалась постоянной.

Ланные по выявляемости лефектов под насечкой говорят о том, что при контроле под резьбой эталонирование чувствительности можно проводить по гладкому тест-образцу, а в случае а необходимо вносить поправку в значение уровня контрольной чувствительности при настройке по тест-образцу с гладкой поверхностью или использовать тест-образец с такой же формой поверхности. С учетом исследований по выявляемости дефектов под поверхностью типа резьбы и под резьбой на шпильках, опыта применения способа сначала были разработаны «Методические указания по ультразвуковой УЗК шпилек на заводах и на тепловых и атомных станциях (рис. 31) дефектоскопии шпилек головными волнами» МЦУ-7-90, а затем «Методика ультразвукового контроля шпилек головными волнами» МШУ-15-98.

### 7.4. Ультразвуковой контроль головными волнами аустенитных сварных соединений трубопроводов Ду300 на АЭС

В 1997 г. в связи с массовым появлением трещин в аустенитных сварных соединениях (АСС) трубопроводов Ø325×15 мм (Ду300) концерн «Росэнергоатом» поставил вопрос о разработке эффективной методики УЗК АСС данных трубопроводов.

Исследования и анализ показали, что основные сложности УЗК АСС трубопроводов Ду300 состоят в следующем:

- высокий уровень радиационного фона, что обусловливает высокую производительность и простоту методики УЗК изза невозможности длительного пребывания контролера на объекте;
- сложная конструкция сварного соединения, включающая про-

точки различных размеров (по ширине и высоте) и углы ее скоса на внутренней поверхности, а также возможные технологические отражатели и дефекты в корне шва (провисания, утяжины, несоосность труб);

- сложная крупнозернистая структура околошовной зоны (ОШЗ) и металла шва сварного соединения, нагруженность внутренним давлением, усилиями от самокомпенсации труб и оборудования. Кроме того, в нем присутствуют остаточные сварочные напряжения;
- 4) ширина (валика) усиления в диапазоне 16—20 мм, но встречается и более. Вблизи усиления могут иметь место технологические утяжины и неровности, образованные при механическом удалении брызг от сварки, которые препятствуют созданию качественного акустического контакта преобразователя с металлом;
- 5) расположение сварных соединений в различных пространственных положениях, в стесненных условиях.

При постановке работы проектировщики и эксплуатационники исходили из реального положения дел в УЗД аустенитных сварных соединений — эффективной методики нет, трудности для УЗК существенные — методик нет в России, в Украине, в западных странах. В связи с этим перед разрабатываемой технологией УЗК поставили задачи:

- выявлять кольцевые протяженные (более 10 мм) трещиноподобные несплошности (эксплуатационные трещины) высотой 2 мм и более в сварном шве и ОШЗ;
- технология не должна предусматривать выявления технологических (объемных) несплошностей, регламентируемых требованиями правил контроля по радиографии.

В этот период исследования ЦНИИТМАШ и опыт работ поз-



Рис. 32. Поле головной волны в полубезграничной среде (a), в листе (б) и трубопроводе со сварным соединением (в)

волили разработать эффективные методики выявления трешин в наплавках и под наплавками в биметаллических сосудах, трубопроводах и их сварных соединениях: корпусах реакторов ВВЭР-1000, трубопроводах главного циркуляционного контура Ду850 ВВЭР-1000 и контура многократной принудительной циркуляции Ду800 РБМК-1000 и др., была исследована применимость норм оценки качества при УЗК по Правилам контроля ПК 1514-72 [28], обоснована целесообразность их корректировки, разработаны, предложены и приняты новые нормы по УЗК сначала антикоррозионных наплавок [29], а затем и сварных соединений [30], впервые были разработаны методики определения толщины аустенитных наплавок и плакировок с помощью УЗК [31].

С учетом перечисленных факторов и обнаружения новых закономерностей мы вновь предложили использовать для УЗК АСС трубопроводов Ду300 продольные волны головного типа [32]. При этом мы опирались на следующие базовые положения:

- при использовании ГВ они распространяются почти по нормали к преимущественной ориентации трещины в сварном соединении;
- ГВ имеют максимальную скорость распространения по сравнению с другими волнами.
  Это обеспечивает наилучшие возможности для интерпретации сигнала о наличии отражателя и его идентификации;
- ГВ на одной и той же частоте в сравнении с другими волнами имеют максимальную длину волны. Это обеспечивает возможность получения сравнительно высокого соотношения сигнал/шум от несплошности на фоне крупнозернистой структуры шва и ОШЗ;
- до проведения настоящих исследований к негативным факторам мы относили сравни-





Реальные изображения на экране дефектоскопа при выявлении трещины на разных расстояниях



Рис. 34. Дефектоскопия аустенитного сварного соединения толщиной 12-15 мм головными волнами (в стробе импульс ГВ от трещины)

тельно небольшую толщину трубы – 15 или 16 мм, а в случае с проточкой – 11–12 мм. Считалось, что близость донной поверхности может мешать дефектоскописту из-за образования ложных сигналов в стробируемой зоне контроля.

Важным фактором оказался правильный выбор конструкции и разработка специализированного искателя ПГЦ-300.

Рис. 33. Схема

УЗК (а) и зависи-

Проведены дополнительные исследования структуры поля подповерхностной ГВ в контролируемом металле. На рис. 32 представлены известные закономерности для поля подповерхностной ГВ в полубезграничной среде: луч с максимальной амплитудой как бы отжимается от контактной поверхности, распространяется под углом 12-15° к ней, а амплитуда ГВ достаточно быстро убывает с расстоянием.

Исследования в листах толщиной 8-20 мм показали, что в них имеет место концентрация акустической энергии подповерхностной волны в ограниченном объеме, в том числе за счет переотражений на донной поверхности при больших углах падения продольных волн (они как бы скользят над донной поверхностью), как показано в листе и в сварном соединении на рис. 32. Было обнаружено, что при расстояниях 30-40 мм и более от точки выхода излучателя подповерхностная ГВ с максимальной амплитудой распространяется вдоль внутренней поверхности и располагается на высоте 2-5 мм от донной поверхности. Таким образом, вблизи донной поверхности образуется ультразвуковой поток, распространяющийся параллельно донной поверхности. Исследование акустического поля на трубах Ø325×15 мм показало наличие закономерностей, полученных на листах.

Результаты этих исследований и полученные закономерности в значительной мере спо-



Рис. 35. Дефектограмма УЗК сварного соединения 23М2

собствовали разработке технологии УЗК корневых трещин в сварных соединениях трубопроводов Ду300. На рис. 33 и 34 представлены схемы прозвучивания и результаты измерений зависимостей амплитуды эхо-сигнала ГВ от трещины различной высоты в функции расстояния между искателем и отражателем. На рис. 33 показаны зависимости при прозвучивании через основной металл, когда трещина расположена со стороны кромки шва, ближней к искателю. Анализ полученных зависимостей показал, что при выявлении корневых трещин высотой 2 мм и более имеется возможность обнаружения трещин с соотношением сигнал/шум 12 дБ и более при прозвучивании как через основной металл, так и через сварной шов.

Результаты показали, что предложенный способ УЗК позволяет:

• обнаруживать корневые трещины различной высоты в сварных соединениях аустенитных трубопроводов и сосудов, выполненных по рекомендуемой технологии;

- обнаруживать корневые протяженные (более 10 мм) трещины высотой 1 мм и более;
- использовать при УЗК несколько информативных признаков, а именно: амплитуду эхо-сигнала; условную протяженность трещины; эквивалентную высоту трещины, определяемую через условную ширину отражателя как разницу расстояний между искателем и отражателем при различных уровнях чувствительности (или при различных амплитудах эхо-сигнала) для оценки высоты корневой трещины.

В процессе исследований возможности УЗК ГВ АСС трубопроводов Ду300 на образцах была выявлена специфическая особенность данной технологии УЗК. На рис. 34 показаны схема хода лучей в контролируемой трубе, экран дефектоскопа и реальные изображения сигналов от трещины при различных расстояниях искателя от сварного шва. Особенность состоит в том, что наряду с эхо-сигналом подповерхностной ГВ, а он, как мы и предполагали, располагается ближе всех к зондирующему импульсу, имеют место сопровождающие его импульсы других головных, продольных и поперечных волн, которые распространяются по различным траекториям, показанным на рис. 34. Научиться правильно настраивать дефектоскоп с искателем на настроечном образце (НО) с имитатором трещины и отличать основной сигнал ГВ от сопровождающих на НО и реальном АСС трубопровода, как впоследствии оказалось, являлось одной из главных задач контролера УЗК при освоении новой технологии контроля.

На всех АЭС, где методика предполагалась к применению, осуществлялись специальные работы по определению эффективности и достоверности методики, в особенности эффективности выявления реальных трещин межкристаллитного коррозионного растрескивания под напряжением (МКРПН). На Курской АЭС проведено исследование сварного соединения 23М2 водоопускного трубопровода, вырезанного по результатам РГК. Исследование выполняли с применением разработанного ЦНИИТМАШ проекта «Методика УЗК аустенитных сварных соединений трубопроводов Ø325×15 АЭС с реакторами РБМК» МЦУ-7-96 и «Методике УЗК АСС с толщиной стенки 10-25 мм» МТ 34-70-023-86 [34]. Дефектограмма представлена на рис. 35.

Методика МТ 34-70-023-86 (УЗК поперечными волнами) выявила и забраковала четыре отражателя.

УЗК по методике ЦНИИТ-МАШ на поисковом уровне чувствительности зафиксировал отражатель № 1 с максимальным



Рис. 36. Несплошности в сечении сварного соединения 23M2 на участке отражателя № 1 (две стороны реза)

превышением по амплитуде на 6 дБ с одной стороны шва и на 4 дБ с другой стороны шва, условная протяженность 37 мм. Отражатель № 2 выявлялся в виде отдельного сигнала (без соответствующего сопровождения другими импульсами) с амплитудой на 4 дБ больше браковочного уровня и условной протяженностью 40 мм. Отражатель № 3 давал эхосигнал меньше поискового уровня, точечный. Отражатель № 4 выявлялся как точечный с амплитудой, равной поисковому уровню. Участок № 1 по способу ЦНИИТМАШ был забракован, участок № 2 был отмечен как участок с повышенным шумом, участки № 3 и 4 не фиксировались. В результате проведенных металлографических исследований было установлено:

- на участке № 1 выявлена протяженная несплошность (трещина) высотой от 3,1 до 7,0 мм в рассмотренных сечениях (см. рис. 35);
- на участках № 2-4 несплошностей не обнаружено. Анализ результатов УЗК показал:
- возможность ложной браковки сварных соединений при использовании методики МТ 34-70-023-86;
- удовлетворительные результаты контроля при применении способа и методики ЦНИИТМАШ.

Результаты исследований и апробации проекта «Методика УЗК аустенитных сварных соединений трубопроводов Ø325×15 АЭС с реакторами РБМК» МЦУ-7–97 (рис. 36) позволили главному конструктору реакторной установки и концерну «Росэнергоатом» рекомендовать методику МЦУ-7–97 для использования при эксплуатационном контроле сварных соединений трубопроводов РБМК.

В табл. 1 представлены результаты УЗК АСС трубопроводов Ду300 первого блока Курской АЭС. Из таблицы видно, что методика МЦУ-7—97 позволила оценить реальную дефектность сварных соединений и определить объем сварных соединений для ремонта. Заключение по результатам 100%-ного УЗК по МЦУ-7—97 явилось основанием для оценки качества АСС трубопроводов Ду300 и позволило своевременно пустить блок в эксплуатацию.

Наибольшие подготовительные работы были проведены на Чернобыльской АЭС. Информация о разработке новой методики МЦУ-7—97 и отдельные результаты использования ее на АЭС России поступила и в Украину. Работы по реновации третьего блока ЧАЭС проводились за счет Европейского банка реконструкции и развития (ЕБРР). Для обеспечения нормативного использования новой технологии УЗК АСС трубопроводов Ду300 на Чернобыльской АЭС Администрации ядерного регулирования (АЯР) Украины, НАЭК «Энергоатом» и ЕБРР предложили осуществлять работы по двум направлениям.

1. Провести приемочные испытания методики МЦУ-7-97 в соответствии с рекомендациями

### Таблица 1. Результаты исследований аустенитных сварных соединений трубопроводов Ду300 первого блока Курской АЭС

| Метод контроля |                 | Количество швов, шт. | Брак, шт.                                                            | Примечание                                                |  |  |
|----------------|-----------------|----------------------|----------------------------------------------------------------------|-----------------------------------------------------------|--|--|
| Радиография    |                 | 444 (100%)           | 14 – непровары, шлак;<br>5 – трещины;<br>12 – технические отклонения | Нет трещин с коррозией под напряжением                    |  |  |
| УЗК            | MT-34-70-023-86 | 444 (100%)           | 222 (50%) (по амплитуде,<br>протяженности)                           | Предположили перебраковку при<br>чувствительности Ø8,4 мм |  |  |
|                | МЦУ-7—97        | 226                  | 34 (1 < 100 мм)                                                      | Ремонт и допуск по техрешению                             |  |  |



Рис. 37. Расположение дефектов по периметру АСС

Европейского сообщества по неразрушающему контролю ENIQ «Европейская методология по аттестации» [33]. (Отметим, что такие работы проводились впервые на территории бывшего СССР.)

 Провести опытный экспертный УЗК по методике МЦУ-7–97 на трубопроводах третьего блока ЧАЭС.

Сразу после принятия этого решения из России на ЧАЭС прибыла команда российских контролеров для представления методики и экспертного УЗК АСС трубопроводов Ду300. Контролеры имели аттестацию по МЦУ-7–97 и свежий опыт УЗК на Курской и Смоленской АЭС.

В процессе выполнения экспертного УЗК проходила подготовка, обучение и тренинг контролеров УЗК Чернобыльской и других АЭС Украины. Они были аттестованы и в дальнейшем принимали участие в работах по аттестации методики и по сплошному УЗК. При экспертном УЗК было проконтролировано 135 АСС опускных трубопроводов и 45 на напорных трубопроводах, не имевших замечаний по результатам РГК.

Результаты УЗК и металлографических исследований:

- из 135 АСС опускных трубопроводов в 19 обнаружены протяженные отражатели;
- из 45 ACC напорных трубопроводов в шести были обнаружены протяженные отражатели;
- выборочные разрушающие испытания темплетов шириной 42–47 мм (долом на разрывной машине), вырезанных на участках расположения по результатам УЗК трещинообразных отражателей, подтвердили наличие трещин различной высоты.

В табл. 2 представлены сравнительные результаты неразрушающего контроля (РГК и экспертного УЗК по МЦУ-7–97) сварных соединений трубопроводов Ду300. Они показали, что, во-первых, при радиографическом контроле возможна значительная перебраковка по количеству дефектных сварных соединений, а во-вторых, воз-

### Таблица 2. Сравнительные результаты РГК и УЗК по МЦУ-7-97 АСС трубопроводов Ду300 КМПЦ 3-го энергоблока ЧАЭС

| Метод    | Количество СС,                     | Количество сварных соединений с протяженностью несплошностей, мм |        |         |         |      |       | Суммарная  |  |
|----------|------------------------------------|------------------------------------------------------------------|--------|---------|---------|------|-------|------------|--|
| контроля | где дефектов<br>не обнаружено, шт. | 50 и менее                                                       | 51-100 | 101-150 | 150-200 | >200 | Всего | по всем СС |  |
| РГК      | -                                  | 32                                                               | 11     | 2       | _       | -    | 45    | 1882       |  |
| УЗК      | 6                                  | 5                                                                | 16     | 8       | 5       | 5    | 39    | 4945       |  |



Рис. 38. Сравнительные характеристики выявляемости трещин МКРПН в ACC трубопроводов Ду300 и достоверность контроля (по РД ЭО 0488–03) при использовании методики МЦУ-7–97 и других допущенных к применению

можна недобраковка по протяженности трещин. В последнем столбце таблицы видно, что суммарная протяженность трещин по результатам УЗК более чем в 2,5 раза превышает данные по РГК. Данные по протяженности хорошо иллюстрируются диаграммами расположения дефектов по периметру сварных швов на рис. 37.

В соответствии с положениями Европейской методологии по аттестации [34] была разработана «Программа аттестации «Методики УЗК аустенитных сварных соединений трубопроводов Ø325×15 АЭС с реакторами РБМК» МЦУ-7-97», утверждена руководством НАЕК «Энергоатом» и Чернобыльской АЭС и согласована АЯР МЭБУ. Она определила: цели и задачи аттестации, требования к аттестационной комиссии, требования к тест-образцам, требования к персоналу, этапы аттестации, оценку результатов аттестации.

По результатам работы аттестационная комиссия решила:

 применение методики обеспечивает выявление трещин МКРПН высотой от 2 мм в реальных сварных соединениях и несплошностей в виде искусственных отражателей высотой от 2 мм и более;

 результаты УЗК, полученные при использовании методики, являются основанием для оценки качества сварного соединения.

Положительные результаты аттестации позволили выполнить и принять результаты сплошного УЗК АСС Ду300 третьего блока Чернобыльской АЭС. Главный инженер ЧАЭС доложил об этом на заседании комиссии ЕБРР в докладе «Повышение безопасности энергоблока № 3 Чернобыльской АЭС в период ремонтной кампании 1997–1998 гг. Основные направления».

Следует особо отметить, что в рамках Комплексной программы Росэнергоатома 2001–2005 гг. были выполнены работы, позволившие обосновать и обеспечить безопасную эксплуатацию аустенитных трубопроводов Ду300 на АЭС с РБМК. НИКИЭТ были проведены работы по экспериментальной оценке достоверности методик контроля, допущенных Ростехнадзором, Росэнергоатомом и главным конструктором РБМК для УЗК АСС трубопроводов Ду300 и используемых

на АЭС. Работы были выполнены в рамках «Программы экспериментальных испытаний «30 катушек» на образцах сварных соелинений аустенитных трубопроводов Ду300 с реальными дефектами, вырезанными на АЭС с РБМК-1000 без привлечения ЦНИИТМАШ. На рис. 38 представлены результаты работ по этой программе [35]. Они продемонстрировали существенные преимущества методики МЦУ-7-97 в сравнении с другими методиками ручного, полу- и автоматизированного контроля. Несомненно, эти преимущества связаны с тем, что методика МЦУ-7-97 основана на применении продольных волн головного типа.

### 7.5. Ультразвуковой контроль трещинообразования под антикоррозионной аустенитной наплавкой на сосудах и трубопроводах

Правила контроля устанавливают объем неразрушающего контроля наплавок и нормы допустимых дефектов. В частности, для антикоррозионной наплавки корпуса реактора правилами предусматривается проведение УЗК зоны сплавления наплавки с основным металлом, внешнего осмотра и капиллярной дефектоскопии поверхности наплавки. Трещины во всех случаях не допускаются, а размеры других дефектов наплавки регламентируются нормами Правил контроля.

В начале 1970-х гг. в литературе появились сведения о трещинах, расположенных в зоне сплавления антикоррозионной наплавки с основным металлом. Результаты исследований [36] показали, что в целом трещинообразование под антикоррозионной аустенитной наплавкой является составной частью общей закономерности образования трещин в сварных соединениях при термической обработке. Об-



Рис. 39. Зависимости амплитуды эхо-сигнала головной волны от толщины аустенитной наплавки для искателей ИЦ-70 (а) и ИЦ-61 (б): 1 — для отражателей диаметром 2 мм; 2 — диаметром 4 мм



Рис. 40. Изменение амплитуды эхо-сигнала ГВ от дефекта под аустенитной наплавкой и уровень шумов в зависимости от расстояния между искателем и отражателем при толщине наплавки 5, 6 мм:

а — ИЦ-61; б — ИЦ-70; 1 — шумы; 2—5 — цифры соответствуют величине диаметра отражателя; 6 — донный сигнал

разование трещин было обнаружено под наплавкой, выполненной и лентой, и электродами. Как правило, трещины возникали в переходной зоне основного металла под перекрытиями двух рядом лежащих валиков. Непосредственно после наплавки трещины не образуются, они возникают лишь в процессе последующей термической обработки наплавленного элемента. Размеры таких трещин лежат в пределах от незначительных граничных разделений между зернами до максимально встречающихся (длиной от 8 до 10 мм и высотой от 2 до 3 мм). Трещины ориентированы под определенным углом к направлению наплавки, обычно в пределах от 45 до 90°.

Наряду с выбором исходных материалов, параметров наплавки и термообработки, исключающих появление трещин в зоне сплавления антикоррозионной наплавки с основным металлом, встал вопрос о разработке метода неразрушающего контроля, позволяющего обнаруживать такие трещины. Для решения задачи обнаружения трещин под антикоррозионной наплавкой ЦНИ-ИТМАШ предложил использовать головные волны (ГВ).

Возможность выявления трещин под наплавкой ГВ с помощью искателей ИЦ-61 и ИЦ-70 изучали на образцах [37]. Трещины в зоне сплавления наплавки с основным металлом имитировали дном плоскодонного отверстия, которое располагалось перпендикулярно линии сплавления. Контактной поверхностью являлась поверхность наплавки.

Наряду с амплитудой эхо-сигналов от отражателей измеряли уровень шумов. На рис. 39–41 представлены графики, характеризующие выявляемость трещинообразных дефектов под антикоррозионной наплавкой искателями ИЦ-61 и ИЦ-70 на частоте 1,8 МГц. Результаты показали способность и возможности с помощью ГВ обнаруживать трещины под наплавкой толщиной от 0,1 до 10,0 мм.

Изменение амплитуды эхосигналов от отражателей диаметром 2 и 4 мм в зависимости от толшины наплавки показано на рис. 39. Различный качественный характер зависимостей амплитуды от толщины наплавки (рис. 40) обусловлен конструкцией искателей и структурой акустического тракта. При использовании ИЦ-61 («тандем») ГВ падает на подповерхностный отражатель, отражается от всей поверхности плоскодонного отражателя и принимается приемником, расположенным после излучателя. На рис. 39, б точками представлены значения максимальных эхо-сигналов для каждой толщины наплавки. Имеют место значительные флуктуации



Рис. 41. Дефектограмма УЗК биметаллической плиты с поднаплавочными трещинами (прямоугольниками выделены несплошности, подвергшиеся металлографическим исследованиям)



Рис. 42. Форма, ориентация и размеры выявленных несплошностей

амплитуд максимальных эхосигналов от отражателей на разной глубине.

ИЦ-70 обладает большей чувствительностью по глубине в сравнении с ИЦ-61, так как позволяет выявлять отражатели диаметром 2 мм при толщине наплавки 10 мм и менее, но при толщине наплавки от 7 до 10 мм имеет меньшую разрешающую способность по амплитуде между отражателями от 2 до 5 мм. ИЦ-61 выявляет отражатели диаметром 2 мм при толщине наплавки 8 мм и менее.

Наряду с корпусами реакторов важным оказалось иметь средства и методику УЗК, обеспечивающие выявление поднаплавочных трещин в биметаллических трубопроводах ГЦК Ду850 на АЭС с ВВЭР-1000 и КМПЦ Ду800 на АЭС с РБМК-1000. На рис. 40 показано исследование УЗК ГВ трещин на трубопроводах: изменение амплитулы эхо-сигнала в зависимости от расстояния между искателем и отражателем. Показан также относительный уровень шумов. Эти зависимости аналогичны полученным для перлитных сталей. В то же время при использовании ИЦ-61 имеется большее соответствие между амплитудой эхо-сигнала и размером отражателя и большая разрешающая способность при определении эквивалентного размера и высоты отражателя.

Эффективность и работоспособность методики УЗК ГВ при выявлении поднаплавочных трещинообразных и других несплошностей исследовалась на специально изготовленном испытательном образце с заложенными и выращенными дефектами (рис. 41). Исследования ставили своей целью оценить и сравнить способность различных методик обнаруживать дефекты, определять и выбирать параметры УЗК при выявлении и интерпретации различных несплошностей ГВ и со стороны перлитного металла наклонными искателями поперечных волн с углами ввода 40, 45, 50, 60 и 65°. Из всех дефектов в плите, выявленных при УЗК, выбраны шесть типичных (№ 1, 2, 4, 5, 12, 13, рис. 42).

Металлографические исследования показали, что:

№ 1 — шлаковое включение в зоне сплавления: максимальный размер 1,5 мм;

- № 2 трещина под наплавкой и шлак в наплавке — 9 мм высота;
- № 4 мелкое шлаковое включение (Ш0,6 мм) в зоне сплавления (ГВ не выявляется);
- № 5 трещина под наплавкой высотой 8,5 мм и шлак в наплавке;

№ 12 — трещина под наплавкой высотой 11,2 мм; № 13 — трещина под наплавкой высотой 10,5 мм.

Цифры при несплошностях — высота в направлении, перпендикулярном зоне сплавления, по результатам металлографических исследований. При выборе этих несплошностей учитывалось, что все они зафиксированы при УЗК наклонными искателями, пять из них зафиксированы при УЗК ГВ, а один ГВ не фиксировался. Сравнительные ультразвуковые характеристики несплошностей представлены в табл. 3.

УЗК ГВ (правая часть табл. 3) определил несплошности № 2, 5, 12 и 13 как недопустимые (дефекты) по эквивалентному размеру и коэффициенту относительной условной ширины К<sub>ш</sub>. С помощью УЗК зафиксирована несплошность № 1 с допустимыми эквивалентным размером и К<sub>ш</sub> и не зафиксирована несплошность № 4. Оказалось, что для высоких трещин о размере и глубине их проникновения при УЗК можно судить по коэффициенту относительной условной ширины К<sub>Ш</sub>. Трещина № 12 распространяется прямолинейно в направлении, перпендикулярном к поверхности образца (наплавки). При увеличении ×500 наблюдались незначительная извилистость и изредка ответвления протяженностью 20-60 мкм. Трещина не была обнаружена непосредственно при вскрытии, травлении и визуальном осмотре. Наличие такой высоты трещины в перлитном металле было установлено только после исследования образца под микроскопом, что связано с малым раскрытием трещины.

Несплошности № 2, 5 и 13, так же как и № 12, при вскрытии оказались вертикальными трещина-

ми (рис. 42). Несплошность № 1 при вскрытии представляла собой шлаковое включение в зоне сплавления наплавки с основным металлом. Несплошность № 4, которая не была зафиксирована УЗК ГВ. оказалась мелким шлаковым включением. Размеры и форма всех несплошностей на шлифах показаны на рис. 42. Таким образом, исследования показали, что УЗК ГВ обеспечивает эффективное выявление трещин под аустенитной наплавкой, а также позволяет судить о типе и размерах дефектов под наплавкой по амплитуде сигнала и коэффициенту относительной условной ширины. Полученные результаты показали эффективность УЗК ГВ при выявлении трещин под наплавкой и возможность отстроиться от несушественных несплошностей. ЦНИИТМАШ разработана технологическая инструкция «Ультразвуковая дефектоскопия ГВ сварных соединений трубопровода ГЦК Ду850 ВВЭР-1000 (трещины под наплавкой)». Она используется при изготовлении, монтаже и предэксплуатационном контроле ВВЭР-1000 в России и за рубежом.

### 7.6. Головные волны в ДВМ и ТОFD

В разделах 7.1–7.5 представлены работы по развитию эхо-метода УЗД головными волнами. Следует отметить также работы по использованию ГВ в режиме прозвучивания (теневом). Они приведены при исследовании законов возбуждения, приема и ослабления ГВ. Исследования прохождения ГВ в антикоррозионной наплавке показали, что ГВ могут быть возбуждены в изделиях с аустенитной наплавкой и зарегистрированы на расстоянии от 200 до 300 мм от излучателя, почти как в перлитных сталях.

Наряду с этим выявлена важная особенность закономерности изменения амплитуды ГВ с расстоянием, которая заключается в наличии ярко выраженных минимума и максимума в зависимости амплитуды от расстояния. Более того, установлено, что расстояние между излучателем и приемником,

|                            | УЗК наклонными поперечными волнами                                        |                  |                                      |      | УЗК головными волнами                                                 |                                                                    |                                                                  |      |  |
|----------------------------|---------------------------------------------------------------------------|------------------|--------------------------------------|------|-----------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------|------|--|
| Номер<br>несплош-<br>ности | Эквива-<br>лентная<br>площадь<br>S <sub>3(max)</sub> ,<br>мм <sup>2</sup> | Угол<br>ввода, ° | <i>S</i> , мм²,<br>при угле ввода, ° |      | Максимальная амплитуда<br>в сравнении с имитатором<br>трешины (СИ мм) | Эквивалентная пло-<br>щадь <i>S</i> <sub>3</sub> , мм <sup>2</sup> | Коэффициент отно-<br>сительной условной<br>ширины К <sub>ш</sub> |      |  |
|                            |                                                                           |                  |                                      |      | $S=12 \text{ MM}^2, A_{\text{max}}/A_{\text{neth}}$                   |                                                                    | Сторона                                                          |      |  |
|                            |                                                                           |                  | 50°                                  | 65°  | παχ μοφ                                                               |                                                                    | 1                                                                | 2    |  |
| 1                          | 10,0                                                                      | 65               | 4,0                                  | 10,0 | +3 дБ                                                                 | 9                                                                  | 0,36                                                             | 0,68 |  |
| 2                          | 10,0                                                                      | 45               | 6,4 5,6                              |      | +8 дБ                                                                 | 27                                                                 | 0,92                                                             | 1,56 |  |
| 5                          | 10,0                                                                      | 60               | 8,8 8,8                              |      | +13 дБ                                                                | 50                                                                 | 1,28                                                             | 1,64 |  |
| 12                         | 7,2                                                                       | 65               | 6,4                                  | 7,2  | +7 дБ                                                                 | 25                                                                 | 1,24                                                             | 1,16 |  |
| 13                         | 7,2                                                                       | 65               | 4,0                                  | 7,2  | +13 дБ                                                                | 50                                                                 | 1,36                                                             | 1,48 |  |
| 4                          | 2,8                                                                       | 50               | 2,8                                  | -    | Не зафиксировано                                                      | -                                                                  | -                                                                | -    |  |

Таблица 3. Сравнительные УЗ-характеристики несплошностей



Рис. 43. Изменение амплитуды ГВ при распространении в изделии с аустенитной наплавкой: 1 - z = 8 мм; 2 - z = 11 мм; 3 - перлитная сталь;

z — толщина наплавки; И — излучатель ГВ; П — приемник ГВ; на вставке схема прозвучивания

при котором имеет место минимум (или максимум), находится в прямой зависимости от толщины наплавки: большей толщине наплавки соответствует большее расстояние между излучателем и приемником в момент достижения максимума (минимума) (рис. 43) [37]. Наличие максимума и минимума связано с тем, что скорость ультразвука в аустенитной наплавке меньше, чем в основном металле. Подобное распределение скоростей создает условия, аналогичные приповерхностному звуковому каналу в гидроакустике при положительном градиенте скоростей.

В результате этого продольная подповерхностная волна, достигая зоны сплавления, рефрагирует в сторону среды с меньшей скоростью звука, т.е. в сторону поверхности наплавки. При выходе на поверхность она регистрируется приемником с соответствующим увеличением (уменьшением) амплитуды сигнала ГВ, которая достигает максимума (минимума) при сложении подповерхностной волны прямого прохождения и рефрагированной волны. Расстояние между излучателем и приемником в момент достижения максимума (минимума) прямо связано с толщиной наплавленного слоя. Позже тот же эффект обнаружен при исследовании закаленного слоя валков холодной прокатки [38].

Особенно полезным и эффективным оказалось совместное в одном методе использование ГВ и дифракционно-временного метода (ДВМ) (рис. 44) [39]. В нем для слежения за параметрами УЗК в качестве опорного сигнала используют импульс ГВ, возбуждаемый лучом диаграммы направленности излучателя, падающим на поверхность контролируемого элемента под первым критическим углом одномоментно с частью пучка, озвучивающим зону контроля и трещину. Ранее ЦНИИТ-МАШ зарегистрировал такой способ УЗК а.с.  $\mathbb{N}$  502311 (рис. 44,  $\delta$ ), а МНПО «Спектр» на его основе разработал УЗ-толщиномер (рис. 44, в).

Теперь сравним первый (см. рис. 1) и последний (см. рис. 44) рисунки настоящей статьи. Мы видим, что круг замкнулся: та схема прозвучивания, которая была использована при исследовании акустических свойств металла в 1972 г. и привела к обнаружению неизвестных в УЗД металлов быстрых головных волн, полностью повторяется (красные линии на рис. 44, *a*) в современной технологии УЗК. Но сейчас мы знаем о головных волнах очень и очень много!!! И много для этого сделали.

#### Заключение и приоритет СССР и России

Здесь представлена история обнаружения, результаты исследований закономерностей и становления физики, терминологии, технологии ультразвукового контроля головными волнами. В ней показано, что ЦНИИТМАШ был первым при:

- обнаружении и идентификации ГВ в металлах;
- исследовании и выявлении закономерностей возбуждения, распространения и приема ГВ;
- разработке физического представления о ГВ;
- разработке и изобретении новых способов УЗК ГВ;
- уяснении и обосновании новой терминологии ГВ как комплекса волн;
- обосновании и разработке концепции построения конструкций искателей головных волн в виде «тандем» и «дуэт»;
- исследовании технологических особенностей УЗК ГВ различных объектов энергомашиностроения и энергетики;
- разработке пионерских методик, инструкций и технологий УЗК ГВ, обосновании их эффективности и работоспособности;
- обосновании включения новых технологий и методик УЗД ГВ в методические документы, основные положения, отраслевые и государственные стандарты по НК;
- разработке технологий изготовления специализированных искателей ГВ, обеспечении ими заводов, предприятий, электростанций и компаний;
- обучении и тренинге специалистов и контролеров, оказании помощи во внедрении и использовании методик контроля на различных объектах и предприятиях;
- распространении новых научных знаний и опыта через публикации, выступления на конференциях и выставках, семинарах и совещаниях.





Рис. 44. Применение ГВ и сравнение способов УЗК: а — дифракционно-временной метод + ГВ (TOFD); б — способ УЗК по а.с. 502311; в — безэталонный способ УЗ-толщинометрии; ГВ — головная волна; ПВ — продольные волны; t — время распространения импульсов; S — половина расстояния между точками выхода излучателя и приемника;h — глубина залегания верхнего и нижнего краев трещины; H — толщина детали; 1, 2, 3 — искатели УЗК (a.c. 502311)

В заключение отметим и сравним первые доклады, патенты (авторские свидетельства) и публикации специалистов СССР (России) и Федеративной Республики Германии как наиболее передовых стран по УЗ-дефектоскопии металлов в 1970–1990 гг.

### А. Авторские свидетельства и патенты

1. Первое а.с. СССР № 491092 с приоритетом от 1 июня 1973 г. на «Способ ультразвукового контроля качества материалов», авторы: Н.П. Разыграев, И.Н. Ермолов, В.Г. Щербинский, Бюл. изобр. 1975. № 41.  Патент ФРГ № 2802278 с приоритетом от 15 января 1981 г. на «Способ и устройство для неразрушающего контроля приповерхностного слоя», авторы: Х. Вюстенберг, А. Эрхард, В. Мехрле.

### Б. Доклады на конференциях

- Первый (пионерский) доклад СССР на VII Всесоюзной конференции «Неразрушающий контроль материалов изделий», Киев, 1974 г.: Разыграев Н.П., Ермолов И.Н., Щербинский В.Г. «О выявлении подповерхностных дефектов ультразвуковым методом» (Труды конференции).
- Доклад ФРГ на 9-й Всемирной конференции по неразрушающему контролю в Мельбурне, Австралия, 1979 г.: Wuestenberg H., Erhard F., Mundry E., Schulz E. Improved techniques for the ultrasonic inspection of welds (Улучшенные методики для V3K сварных соединений).

### В. Первые публикации по физике и технологии

### 1. СССР (Россия):

- Разыграев Н.П., Ермолов И.Н., Щербинский В.Г. Использование волн головного типа для УЗК // Дефектоскопия. 1978. № 1. С. 33.
- Разыграев Н.П. Экспериментальные исследования продольных подповерхностных волн и применение их для обнаружения подповерхностных дефектов в деталях энергетических установок: дис. ... канд. техн. наук. М.: ЦНИИТМАШ, 1979.
- 2. Германия:
- Erhard A., Wuestenberg H., Schulz E., Mundry E. Anwendungen der longitudinalen Kriechwelle in der zerstorungsfreien Prufung mit Ultraschall und Erfahrungen beim Einsats von Kriechwellenprufkopfen // Materialprufung. 1982. V. 24. P. 43–48.
- Erhard A., Kroning M. Erzengung, Ausbreitung und Anwendung von

Ultraschall-Kriechwellen // Materialprufung. 1984. V. 26, No. 9. VDI-Verlag GmbH, P. 323–326. (Эрхард А., Кренинг М. Генерация, распространение и применение ультразвуковых ползучих волн).

#### Г. Независимый эксперт

Krautkramer J., H. Werkstoffprufung mit Ultraschall, Funfte, Neubearbeitete Auflage. Berlin – Heidelberg: Springer-Verlag, 1986. 752 S.

- Ссылки в журнале «Дефектоскопия» на статьи по ГВ в СССР № 411 (1979 г.), 412 (1978 г.), 413 (1978 г.), 1240 (1981 г.);
- Ссылки в журнале Materialprufung на труды по ГВ (creeping wave) в ФРГ № 400 (1982 г.). 395 (1984 г.)

#### Д. Награды за результаты работ по ГВ

- СССР премия Минэнергомаш 1974 г. Н.П. Разыграеву молодому ученому за первые исследования ГВ.
- ФРГ Германское общество NDT, приз и медаль Бертольдса (основатель неразрушающего контроля в Германии) – 1984 г. за исследования (В2) ползучей волны (creeping wave) А. Эрхарду, М. Кренингу.

Сопоставление показывает и подтверждает приоритет СССР во времени в обнаружении, физических исследованиях, разработках, технологической проработке УЗД головными волнами и сгееріпg wave. Исключение — призовой фонд. Здесь можно отдать преимущество призу Германского общества неразрушающего контроля, которым наградили немецких ученых.

В завершение нынешней 50-летней истории головных волн хочу поблагодарить многих соратников и коллег за совместную плодотворную работу. При подготовке к юбилею совместно с А.Н. Разыграевым и с помощью редакции Издательского дома «Спектр» (особая благодарность!!!) была подготовлена и выпущена книга «Головные волны в ультразвуковой дефектоскопии металлов». Надеюсь, настоящая работа послужит нашей науке, поможет коллегам при разработке новых технологий УЗК, молодым ученым, инженерам и дефектоскопистам - в понимании физических процессов в ультразвуковой дефектоскопии металлов. А исследования ГВ продолжаются: д-р техн. наук В.Н. Данилов (АО «НПО «ЦНИИТМАШ») выполнил и опубликовал теоретические исследования УЗ ГВ в металле и вновь показал существование продольной подповерхностной ГВ [40]; а д-р техн. наук В.Г. Шевалдыкин (ООО «АКС») – исследования ГВ, возбуждаемых ЭМА-преобразователем [41].

#### СПАСИБО ВСЕМ!

### Библиографический список

- 23. Разыграев Н.П. Основные положения по УЗД сварных соединений котлоагрегатов и трубопроводов тепловых электростанций «Методика дефектоскопии подповерхностной части сварных соединений головными волнами». ОП № 501 ЦД-75. М.: ЦНИИТМАШ, 1977.
- **24. ОСТ 108.004.108–80.** Соединения сварные и наплавки оборудования атомных электростанций. Методы ультразвукового контроля. М.: Минэнергомаш, 1980.
- 25. Разыграев Н.П. О выявлении подповерхностных дефектов искателями головных волн ИЦ-61, ИЦ-70 // Дефектоскопия. 1981. № 3. С. 97–105.
- 26. Разыграев Н.П. Некоторые особенности ультразвукового контроля головными волнами // Дефектоскопия. 1982. № 6. С. 36–42.
- 27. Разыграев Н.П. Обнаружение поверхностных дефектов и дефектов под грубой поверхностью с помощью головных волн // Дефектоскопия. 1982. № 3. С. 21–23.
- 28. ПК-1514—72. Правила контроля сварных соединений и наплавки узлов и конструкций атомных электростанций, опытных и исследовательских ядерных реакторов и установок. М.: Металлургия, 1975.
- 29. Зубченко А.С., Разыграев Н.П., Рунов А.Е. и др. Оценка технологии изготовления и норм качества при ультразвуковом контроле наплавленных антикоррозионных покрытий // Энергомашиностроение. 1988. № 12. С. 16–20.
- 30. ПНАЭГ-7-010—89. Оборудование и трубопроводы атомных энергетических установок. Сварные соединения и наплавки. Правила контроля. М.: Энергоатомиздат, 1990.
- 31. ПНАЭГ-7-031—91. Унифицированные методики контроля основных материалов (полуфабрикатов), сварных соединений и наплавки оборудования и трубопроводов АЭУ. Ультразвуковой контроль. Ч. 3. Измерение толщины монометаллов, биметаллов и антикоррозионных покрытий. М.: ЦНИИатоминформ, 1992.
- 32. Разыграев А.Н., Разыграев Н.П. Ультразвуковой контроль аустенитных сварных соединений трубопроводов Ду300 / РАН // Дефектоскопия. 2006. № 10. С. 59–71.
- 33. ENIQ. Отчет № 2, EUR 17229 Ru. Европейская методология по аттестации. 2-е изд. / Генеральный директорат, Объединенный исследовательский центр. ECSC-EEC-EAEC. Brussels—Luxemburg, 1997.
- **34.** МТ **34-70-023**—**86.** Методика УЗК аустенитных сварных соединений с толщиной стенки 10— 25 мм в процессе монтажа и эксплуатации атомных станций. М.: ВТИ им. Ф.Э. Дзержинского, 1986.

**ИСТОРИЯ НК** 

- **35.** Стрелков Б.П., Арефьев А.А., Ловчев В.Н., Гуцев Д.Ф. Анализ результатов ЭНК сварных соединений трубопроводов Ду300 КМПЦ РУ РБМК-1000 // МНТК-2008. Безопасность, эффективность и экономика атомной энергетики. Направление «Материаловедение». 21–23 мая 2008 г. М., 2008.
- 36. Vinoker A.L., Pense A.W. Review of underclad cracking in pressure vessel components WRS // Bulletin ASME. 1974. No. 197. P. 18–39.
- **37.** Разыграев Н.П. УЗК трещинообразования под антикоррозионной аустенитной наплавкой // Дефектоскопия. 1984. № 2. С. 60–66.
- **38. Басацкая Л.В.** Разработка теории и усовершенствованного метода ультразвукового контроля параметров поверхностного слоя изде-

лий, закаленных токами повышенной частоты: дис. ... канд. техн. наук. М.: ЦНИИТМАШ, 1984. 210 с.

- **39.** EN583-6 Non-destructive testing / Ultrasonic examination / Part 6. Time of fly diffraction as a method for detection and sizing of discontinuities, 2009.
- **40.** Данилов В.Н. О головных и подповерхностных продольных волнах, излучаемых прямым преобразователем, находящимся на свободной плоской поверхности упругой среды // Контроль. Диагностика. 2021. Т. 24, № 4. С. 4–19.
- **41. Шевалдыкин В.Г.** Головная поверхностная продольная акустическая волна: основные свойства и возможности применения // Контроль. Диагностика. 2021. Т. 24, № 7. С. 4–13.



### Ответы на кроссворд

По горизонтали: 3. Порог. 7. Реверберация. 8. Рэлей. 9. Длительность. 12. Луч. 18. Азотирование. 19. Трансформация. 21. Катастрофа. 24. Баббит. 25. Несплошность. 28. Коллиматор. 29. Бейнит. 30. Раковина.

По вертикали: 1. Пора. 2. Снеллиус. 3. Период. 4. Преломление. 5. Свищ. 6. Цикл. 10. Критерий. 11. Оценка. 13. Частота. 14. Зазор. 15. Прожог. 16. Радиоскопия. 17. Стандарт. 20. Мода. 22. Обмотка. 23. Стоунли. 26. Полюс. 27. Сбой.